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A SECOND~ORDER SHOCK-EXPANSION METHOD APPLICABLE TO
BODIES OF REVOLUTION NEAR ZERO LIFT

By Clarence A. Syvertson and David H. Dennis
SUMMARY

A second-order shock-expansion method gpplicable to bodies of revolu-
tion near zero 1lift is developed. Expresslons defining the pressures on
noninclined bodies are derived by the use of charscteristics theory in
combination with properties of the flow predicted by the generalized
shock-expansion method. This result is extended to inclined bodies to
obtain expressions for the normal-force and pitching-moment derivatives
at zero angle of attack. The method is intended for spplication under
conditions between the ranges of applicability of the second-order poten-
tial theory and the generslized shock-expansion method - namely, when the
ratio of free-stream Mach number to nose fineness ratio is in the nelghbor-
hood of 1.

For noninclined bodies, the pressure distributions predicted by the

second-order shock=expansion method are compsared with existing experimental

results and with predictions of other theories. For inclined bodies, the -
normal -force derivatives and locations of the center of pressure at zero
angle of attack predicted by the method are compared with experimental
results for Mach numbers from 3.00 to 6.28. Fineness ratio 7, 5, and 3

cones and tangent oglves were tested slone and with cylindrical afterbodies

up to 10 diameters long. In genersl, the predictions of the present method
are found to be in good sgreement with the experimental results. For non-
inelined bodies, pressure distributions predicted with the method sre in
good agreement with existing experimental results and with distributions
obtained with the method of cherecteristics. For inclined bodies, the
normal-force derivatives per redisn (for normal-force coefficients refer-
enced to body base area) are predicted within #0.2 and the locations of
the center of pressure are predicted within #0.2 body diameters. On the
basis of these results, the second-order shock-expansion method appears
applicable for values of the ratio of free-stream Mach number to nose
fineness ratio from 0.4 to 2. :

INTRODUCTLON

The flow gbout bodiles traveling at high supersonic speeds was inves-
tigated by Eggers (ref. 1). He found that under specified conditions such

A
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flows could be comsidered as locally two-dimensionael and that they could
be treated by a generalized shock-expansion method. The application of
this method to nonlifting bodies af revolution had been given previocusly
(ref. 2), and subsequently the method was applied to lifting bodles in
references 3 and 4. It was found that the generalized shock-expansion
method accurately predicted the flow about pointed bodies of revolution
when the hypersonic similarity parameter (ratio of Mach number to body
fineness ratio) was greater than about 1. This method ie,-therefore,
particularly useful in the treatment of flows about bodles traveling at
relatively lerge Mach numbers. At lower speeds, the second-order potential
theory of Van Dyke (ref. 5) has been widely used. (See, also, his hybrid
theory for slightly inclined bodies, ref+—6.) The application of this
theory to bodies traveling at large Mach numbers is often 1limited, however,
by the restriction that the maximum slope of the body must be scmewhat less
thsn the slope of a free-stream Mach line. : - -

The ranges of .applicghility of the generalized shock-expansion method
and the second-order potential theory do not-always overlap, and there
remein, therefore, flows at certain combinetions of Mach number and body
shape which cannot be treated by either theory. Normelly, these interme-
diate flows are encountered when the hypersonic similarity persmeter based
on nose fineness ratio is in the nelghborhood of 1. Since this is & range
of practical interest,; additional theoreticel methods are needed.

Some~of this need has been fulfilled recently by the hypersonic small-
disturbance theory (refs. 7 and 8). Im its present state of dévelopment,
however, this theory has application only to limited classes of noninclined
bodies of revolution. For example, due to the series form used to repre-
sent the pressure distribution, it camnot be applied to the nose-cylinder
combinations commonly employed for missile bodies. In large part, then,
the need for a theory applicable at values of the hypersonic similarlty
parameter near 1 still remains.

The present report develops a theory intended to fulfill thils need.
Thils theory is a second-order shock-expansion method. It is developed
by an iteration procedure which employs the generalized method of refer-
ences 1 through 4 as the first approximation. Expressions are derived
which define the pressures on noninclined bodies of revolution. Expres-
sions are.also obtained for the normal-force and pitchlng—moment deriva-
tives at zero angle of attack. Predictions of the method.are compered
with those GF other theories and with experimental results.

SYMBOLS

A body cross-sectional area ' -

Ap body base area ' :

[
P I R FF T
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function defined by equation (6)

- characteristic coordinstes

normal force

normal-force coefficlent,
QoAB

moment about body vertex

itching-moment coefficient
pltc g me ¢ ) aohpd

D -
pressure coefficient, ————EQ

body diasmeter
entropy

fineness ratio
(Fineness ratio of the nose section 1s

total pressure
body length
Mach number
static pressure

dynamic pressure

rectangular coordinates (streasmline direction and normal to

stresmline direction, respectively)

cylindrical . coordinates (x measured from vertex of body snd

¢ from windward meridian)

fn.)

center-of -pressure position (measured from body vertex)

angle of attack

function defined by equation (12)

ratio of specific heats (1.400 for air)
flow deflection angle

function defined by equation (9)
losding (defined by egq. (1k))

function defined by equation (5)
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H © Mach angle (arc sine 1/M) )
v ‘Prandtl-Meyer expasnsion angle .- . L i
o shock~wave angle . _ . A . P
s wfunction defined by equation (13) B
f ~ratio of cross-sectional area of gtreamtube to that at M = 1 i -
(see eq. (7))
Subscripts : L ; e
o) ‘free-stream conditions : " = e
1,2,8,4 conditions evaluated at various points in flow fileld
a afterbody -
c -quantities evaluated for cone tangent to the body -~
8 . quantities evaluated by generalized shock-expansion method ;i
method . - - e
v _ﬁuantities evalusted at vertex of body
o quantities evaluated along downstream face of shock weve = _ . ___ .___
tev quantities evaluated for.cones tangent to body vertex
tex quantities evaluated for cones tangent to body at station =x
£

THEORY -

In the present development of a second-order shock-expansion method,
attention will be restricted to bodies of revolution. It is recognized,
however, that the procedure used herein may, in the future, find applica-
tion to other three-dimensional shspes. T N

The present method is a refinement of the generslized shock-expansion
method of references 1 through 4. On the surface of a body of revolution,
irmmedistely behind a corner, the generalized method represents & first-
order solutilon for the flow and the present method glves the second-order
solution (see Appendix A). Before proceeding, therefore, it 1s well to _
orient the present analysis with a review of the approximations Involved
in the treatment of the flow about bodies of revolution with the gener- _ .= .
alized method. These epproximations may be listed as follows (see e.g, -
ref. 4): (1) Disturbances incident on an oblique shock wave are largely
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absorbed therein, and hence, reflected disturbances are negligible; (2)
the flow appears locally two-dimensionsal; (3) surface streamlines may be
taken as meridian lines. In the intermediaste range of supersonic speeéds
of interest here, the first approximation is particularly well justified
(see, ref. 9), and it will not be considered further. As & conseguence
of the second approximation, a solution given by the generalized method
gatisfies the continulty equation only approximately.l Although the con-
tinuity equation does not appear explicitly in the following analysis, it
is this epproximation that is refined by the present method. The third
approximation is one for bodies of revolution only when they are inclined.
In the present investigation, only bodies nesr zero 1ift will be consid-
ered. Under this restriction to infinitesimal angles of attack, an anal-
ysis has shown that the deviation of true streamlines from meridian lines
has negligible effect on surface pressures. In the following development,
therefore, the use of meridian lines as streamlines will be retained.

Nonlifting Bodles e —

The generalized shock-expsnsion method was developed for nonlifting
bodies of“revolution from the method of characteristics (ref. 2). This
development may be summarized with the aid of the equation for the stream-
wise pressure gradient.2 ) _ _ ] T

dp 2yp 3 _ 1 9Op _ ' (i) .
s sim 2u Os  cos p oC: o . T -—

In the generslized method the pressure is considered constant along first-
family Mach lines (refs. 1 and 4). As a consequence, the right-hand
member of equation (1) is approximated by zero, and the equation can be
integrated to yield the well-known Prandtl-Meyer relation. The obJjective
of the present analysis is to refine this spproximation to the right-hand
member of equation (1). To this end, consider the flow about a body of
revolution which has a pointed nose and over which the flow is everywhere
supersonic. The problem will be simplified by epproximating the profile

1Tn the treatment of two-dimensionel flows, the first approximation is
used but continuity is exactly satisfied.

2This equation can be derived directly from the continulty, momentum,
energy, and state equations with the aid of characteristlcs theory (see,
e.g., refe. 2 and 9). In this form, the equation applies equally well
for rotaetionsl and irrotational flows, requiring only that dE/ds not
dE/dn be zero. T
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of the body with a series of tengents to the .original contour (see i
sketch (a)). It might be noted that Ferrari (ref. 10) suggested a similer
scheme with a body whose profile was made up of chord lines Joining points

Tangent body
Z |

.r—— )

Original body

Sketch (a)

on the oirriginal contour. While either approximation is permiseible, the

tangent body was sélected here so that the conical flow at the vertex .

will be correct regeardless of the degree of approximation used downstream
of the vertex.

The. genersalized method glves the exsdct change 1in surface pressure
sround the corners of the tangent body but predicts nc change along the.
straight-line elements. The present problem reduces to the determination

of the pressure variation along the straight-line elements (see sketch (b)).

Mach Ifnes——\

Streamline

Sketch (b)
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For simplification, the derivative, Jdp/dCy, will be approximated with a
difference equation; thus, along the straight-line element, equation (l)
mey be written (since 05/ds = 0)

) — (2)
EE - 1C08 M i /

where Ap dis the net chsnge In pressure along Mach lines emanating from _
the surface and AC; 1is the corresponding length. This equation will be
solved by an lterastion procedure based on the solution given by the gen-
erelized method. As previously noted, with the generalized method the -
flow is considered two-dimensional end, consequently, no pressure chenge
is predicted along streamlines between the expansion fans at either end

of the straight section. While this approximstion may be appreciably in
error for the surface streamline, it is apparent that the real flow will
appear more nearly two-dimensionsl at large distances from the body axis.
It 1s reasoned, therefore, that a streamline, well removed from the axis
(1ine AB in sketch (b)), can be found along which the pressure will also
be constant to the accuracy required here.® For all Mach lines (such as
CD) emsnating from the straight surface then, the pressures at the points
of intersection with this streamline will be equal. The term, Ap, in
equation (2) therefore can be written as k; - p, where k; is & constant
end, of course, p is the varylng surface pressure. The generalized
method also prescribes that the length (from the surface to streamline ADB)
and inclinations of all Mach lines will not change when the surface is
straight. The term, ACicos p, therefore can be represented by a second
constent, 1/ko. Equation (2) thus may be written

o)
35 = ko(ky ~ p)
which can be integrated to yield

= ky + kge 28 - (3)

where ks 1s the constant of integration. This analysis serves to
establish the form of the equation representing the pressure distribution
on en element of the tangent body.4 It remains now to evaluate the three
unknown constents in equstion (3). Three known conditions can be employed

~SExamination of cheracteristic solutions for the flow about cone-
cylinders indicates that the pressure veriation along streamlines, s moder-
ate distance from the surface, is markedly less than that along the surface.

4Tt might be noted that Ehret, Rossow, and Stevens (ref. 11) found

that pressures on ogives correlated according to the hypersonic similarity
law could be represented approximately by an exponential function of
distance.
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for this purpose. First the pressure, just downstream of the corner, ps,
can be calculated exsctly from the Prandtl-Meyer equations if the pres-
sure, piy, and the Mach nuwber, M;, upstream of the corner are known.
Second, the pressure gradient Jjust downstream of the corner may be cal-
culated from the results glven in Appendix B. The expression defining
this gradient is .

Bz ( sin 51 - sin 85 ) + Bg o <§ Rl ¥ e} (4)
By {2 as -
where = - - - h e -
2yp - - -
A= 2 o (5.
e S p
2(M® - 1) (6)
end  -is the one-dimensionsl area ratic or - T
7+ _
2(y-1)
1+ <?L;;J%>bdz
=3 2 (7)
M
r 1

2

For the-third condition, it is apparent that the pressure on the element
shown in sketch (b) would epproach scme lLimiting value if, rather than
ending at point 3, the element were extended as indicated by the dashed
line. If the element were considered to be infinitely long, so as to
form an extended conical surface, then the only effect the reglon shesd

of point 2 will have on the flow at Infinity is to form an infinitesimally
thin layer near the surface across which the entropy varies. It can be
demonstrated, however, that there is no pressure chsnge through this layer
end that the flow outside the layer is conical. Consequently, the limiting
pressure is simply, P,, the pressure on a cone tangent to the original
body at the same point as the element shown in sketch (b) (and, of course,
traveling at the same free-stream Mach number). With these three condi-
tions, the three unknowns in equation (3) may be evalusted and there is
obtained

D =D, - (P - D2)e ! (8)

R
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where

_a.R X - Xo .
> (pe - Pplcos B2 (9?

It is apparent that, in order to apply equation (8), the pressure
(and Mach number) on the surface of noninclined cones must be known. These
quantities may be determined from the results of reference 2 or reference
12. TFor convenience, the curves shown in figure 1 have been plotted from
the results of reference 12.

By application of equation (8) on successive elements, the pressure
distribution on the tangent body can be determined. In perticular, the
pressure at each of the points of tangency may be calculated and applied
to the original body. The procedure is as follows: First, the elements
of the tangent body are selected and the coordinates (x,r) of each corner

determined. The first element is tangent to the body at the vertex, and ~

the flow over this element is thus conical. For the first corner, then,
the pressure, p1, and the Mach number, M; (see, sketch (v)), are the same
as at the vertex of the original body. The pressure, pz, and the Mach
number, Mp, may then be determined with the Prandtl-Meyer equations. The
pressure gradient, (Bp/as) mey be determined from equation (L4) since,
for the first corner, Ss) is zero. The tangent-cone pressure, De,
may be obtained from reference 12 or figure 1. With the various factors
in equation (8) thus evalusted, the pressure at the tangent point and at
point 3 (see sketch (b)) cen be calculated. In like menner, the pressure

gradient &t point 3 can be determined by differentiation of equation (6)1__

or

® -G E, 20)

With the pressure and pressure gradient at point 3 known (the Mach number

may also be .calculated from the pressure in the usual menner), the factors
in equation (8) may be determined for the next element. This process is,

of course, repeated for each element of the tangent body.

The procedure Jjust described is not difficult to apply; however, fur-
ther simplification can be obtained by the use of a "two-step” tangent
body. This body consists of a cone tangent to the original body at the
vertex and a conical surface tangent to the body at the station where the

Pressure is to be calculated. With this two-step body, the second surface

is & variable depending on the station in question on the original body
For this approximation, equation (8) becomes i}

= pe - (pg - Dgde Y e o (1)
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where T : - o s S R

x sin &y - r cos By

r cos8 & - x sin & (12)
By Qy sin &
¥V = —— - — 13
(Pc = Ps) QS sin 5‘\!/ ( )

The subsciipt, s, denotes quantities at the station on the body as eval-
uated by ~he generalized shock-expansion method. With equation (11) it

is possible to obtain, very rapidiy, a first‘approximation to the pressure
distribution.

The second-order shock-expasnsion method has been developed to predict
the pressures on a noninelined body ofrevolution. In the followlng sec~
tion this method will be extended to lifting bodies.

Lifting Bodies

For inclined bodies of revolution, a second-order shock-expansion
method would involve not only e revised expression for the pressures, but,
in sddition, a revised approximation to the shape of the surface sgtream-
lines. It is recalled from the results of Eggers (ref 1) thet, according
to the gerneralized method, surface streamlines may be approximated by
goedesics.: For bodies of revolution, Savin (ref 3) noted that the per-
tinent gecdesics are simply meridian lines. While this result is exact
for noninclined bodies of revolution, it is only an approximation in the
case of inclined bodies. A refined spproximetion corresponding to a
second~order method undoubtedly could be obtained by graphical integration

of the momentum equations employing the pressure dlgtribution given by the =

generalized method. Howevér, it seems at present that this procedure would
involve extemnsive calculstions. If attention is restricted to bodles near

= 0, it—can be demonstrated that the deviation of the true streamlines
from the meridian lines will not influence surface pressures. The approx-
imation of meridian lines as streamlines can, in effect; be retained and
relatively simple expressions can be obtalned, therefore, for the initial
slopes of the normal-force and pitching-moment curves. To this epd, the
expression-for the normel-force derlvative can be writtenS

( ch f Ar dx (1k)

SThe subscript, « = 0, has been omitted for simplicity of notation.

Fd
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where A 18 the nondimensional loading on a thin disk normal to the body
axis and having unit redius. This loading A is given by the equation

2 % a(p/po) .
A = 7M02ﬁ\]p 4=~ cos @ aop ) (15)

(e}

The problem then is to evaluate d(p/po) /3. The development glven pre-
viously which led to equation (3) also applies to bodies at infinitesimal
angles of attack. Equation (8) also applies; however, the varisbles in
this equation must be considered as dependent on angle of attack. By
differentiation of equation (8), there is cbtained

dn

a(p/pos) _ M a(pe/Po) + e d(pz/po) + (pg - Pz)e"'ﬂ hold § (16)
— = da

da (1 - o da.

d a
This equation must satisfy the condition (gépo) = (Pgépo) at g =0

(i.e., x = x2). By the application of this condition to equation (16),
the last term (involving dn/da) is eliminated.® The term, d(pz/po)/do
mey be evaluated with the aid of the Prandtl-Meyer equation

o i

——————— e w———

da Po Hi de

TP B am - an

d(pa/Po) e [d(Pl/Po) p1 1 d(Hl):l P> 1 da(Ez)

Ferri (ref. 13) has shown that the entropy (end hence the total pressure,
E) on the surface of an inclined cone is constant (independent of ).
When equations (15), (16), and (17) are cambined, then, the integrals of.
the terms involving dH;/do and dHp/da will be zero (since f"cos @ do=0).
Equation (15) may therefore be written © _

A =

fﬂt [(l -_ e M) E(:!iép_ol +e A2 Mp_é-‘éjpg.)_:lcos ¢ dp  (18)

2
PMoZm A da. p¥y

The only terms in equation (18) that are functions of ¢ are d(p./Po)/da
end d(p1/pg)/de. These two terms may be evaluated in terms of the normal-
ac
force derivative of the tangent cone, —a-g tox? and in terms of A;. After
performence of the necessary manipulations, there is obtained .
8This result indicates that the lifting pressures at small angles of
attack vary in a manner analogous to that of the pressures at o = O.
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- (- e M) (tan 8) 2N| D2 oy, (19)
A |tox AL

It is apparent from equation (19) that dCN/Hm for cones must be
known before the loading A can be evalusted. Fortunately, resulte for
cones are available from reference 1Lk and have been plotted for convenilence

in figure 2. The loading, A, may thus be calculated in the same manner
as the zero-lift pressures. In thils case, A, for the first corner is

da
simply (tan B&v) —a%N— .
tev

As before, a first approximation to A can be obtained with the
two-step body. This approximstion gives .

.
A= (L - eP¥)(ten 8) N + 28 o BVian By = &y

(20)
do lgex KV tev

In Appendix C, it is shown that equation (20) leads to very simple results

for certain common body shapes. -

With the loading, A, known, the normal-force derivative may be eval-
uated by integration of equation (14)}. In like manner, the pitching-
moment derivative can be determined from the equation?

—-——KEE[Arxdx (21}

A second-order shock-expsnsion method for bodles of revolution has
been developed to predict the pressure distribution and the normal-force
and piltching-moment derivatives at o =.0. The results are relatively
simple in form and may be applied to & given body with only & moderate
amount of romputations required. Simplified expressions based on an addi-

tional approximstion have also been presented which further reduce the -

amount of work required. It should be noted, however, that ‘open-nosed
bodies and pointed bodies which produce shock waves other than the one at
the vertex regulre specisl forms of the method.® The necessary equations

7The contribution to the pitching moment of the variation in local

axial forces with angle of attack is small for. slender bodies (see T

ref. 15) end will be neglected throughout the present analysis.
8T+t may also be notg% that boattailed bodies present a speclal problem

since neitheéer Pc N0 |ax is defined in this case. In practice, how-
ever, it has been found by comparison with results glven in reference 16
ac
that the use of p. = Py and 75? " = 2 glves reasonable results for .

) cxX
bodies having moderate amounts of boattall.
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for these cases are contained in Appendix B. In addition, there are
several restrictions on the present method which should be mentioned.
First, 1t 1s epparent that if the exponential variation of the pressures
is to be valid, then the pressure gradient just downstreasm of the corner
must have the same sign es the pressure difference, pe - pz- This condi-
tion is given by 1 = O in the genersl case end by ¥ > O for the simpli-
fied method. There is an additional restriction on the simplified method,
and that is that the two-step bodies must be real bodies, (i.e., the
intersection of the two tangent lines must not occur at negative values

of x or r). This condition is given by B > 0. When n = O or B¥ = O,

all equations reduce to those given by the generalized shock-expansion
method. : .

It remains, of course, to determine the accuracy of the second-order
shock-expansion method and to define its range of applicability. There
are sufficlent data available, both from experiment and from character-
istic solutions, with which the predictions of the method for zero-lift
pressure distributions can be compared. However, for the case of 1lifting
bodies, sufficlent date are not available, and for this reason, the exper-
iments next discussed were conducted.

EXPERTIMENT

An experimental program was conducted to determine the initisl’ slopes
of the normal-force curves and the centers of pressure for & series of
nose-cylinder combinations. The tests were designed, of course, to permit
a check on the accuracy of the predictions of the second-order shock-~
expaension method Jjust developed. It is recalled that the method is
intended for application at values of the hypersonic similarity parsmeter,
Mgo/fn in the neighborhood of 1. The tests cover a range of Mo/fn from
0.43 to 2.09.

Apperatus and Tests i —

The tests were conducted in the Ames 10- by 1li-inch supersonic wind
tunnel at Mach numbers of 3.00, 4.24, 5.05 and 6.28. For a detailed
description of .this wind tunnel and its aerodynamic characteristics, see
reference 17. Normal forces and pitching moments for the test models
were measured with a strain-gage balance. The balance counsisted of a model
support sting on which the moments were measured at four polnts. From
these four measurements, the normal forces and centers of pressure were
determined and checked. Measurements were made at nine angles of attack
from -20 to +4° at each test Mach number. At each angle of attack, the
values of X/d and Cy/a were calculated. These values were plotted as

& function of angle of attack, end the intercepts at o = 0 of the result-

ing curves gave the values of dCy/da end X/d at o = O.
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Wind-tunnel calibration data (see, ref. 17) were employed in cam- .
bination with stagnation-pressure measuyrements to obtain the stream -
dynamic pressures. Reynolds numbers based on the maximum diameter of the
models were ) - - = P

Réynholds nudber,”

Mach number million
3.00 0.79
L.ok .72 S
5.05 .35
6.28 .15 . "
Models -

Cones and circulsr-arc tangent ogives of fineness ratios 7, 5, and
3 were tested alone and with cylindrical afterbodies having lengths of- )
2, 4, 6, and 10 diameters. The models were made of polished steel and -

each had a base diameter of 1 inch. . -
Accuracy of Test Results

Streaim Mach numbérs in the region of the test bodies did not vary
more thad £0.03 from the mean values at Mach numbers up to 5.05. A maxi-
mum varistion of +0.05 existed at-the highest test Mach pumber of 6.28.

The -accuracy of the test results is influenced by uncertainties in
the measurement of -moments and in the determination of the stream dynasmic
pressure ghd angle of attack. These uncertalnties resulted in estimsted
maximum errors in the normal-~force derivatives and centers of pressure as
shown in:the following table:

Mo |dCy/da | x/4
3.00 | %0.15 | #0.10
Iy ol +,15 | .10
5.05 +.20 | .15
6.28 £.25 | +.20

It should be noted that, for the most part, the experimental results
presented hérein sre in error by less than these estimates.

A



NACA TN 3527 15

RESULTS AND DISCUSSION

Nonlifting Bodies - —

The second-order shock-expansion method has been developed primarily
to treat flows characterized by values of Mb/fn near uvnity. Accordingly,
the method has been employed to obtain the.zero-lift pressure distribu-
tions at Mo/fn = 1 for several different body shapes.® The results are
shown in figure 3 along with distributions obtained with the generalized
shock-expansion method (ref. 2). Distributions obtained with the method
of characteristics (refs. 11, 18, and 19), which are considered to be
exsct, are also shown. It is apparent in figure 3 that the present method
provides an improvement over the generalized method. The differences in
the distributions obtained with the present method and those obtained
with the method of characteristics sre almost indiscernible.

In figure 3(c), comparison is also made with the predictions of the
hypersonic small-disturbance theory (ref. 8). The curve shown was cal-
culated by three terms of a power series representation of the pressure
distribution. As noted in reference 8, additional terms will be required
before this method will accurately predict the pressures on an ogive.

Even when the additional terms are obtained, however, it seems uniikely
that the small-disturbance theory will provide a more accurate estimate

of the pressures than provided by the present method for the case shown.
The smsall-disturbance theory does have a certain advantage in simplicity
for, if the coefficlents of the series expansion are known, the pressure
distribution can be calculated very easily. This advantage is partially
offset by the restriction that the series method requires the body profile
to have continuous derivatives up to the same order. as the number of terms
used in the series. With this restriction, the theory cannot be applied
beyond the nose-cylinder Jjuncture of the body (fig. 3(c)). _

To investigate the accuracy of the present method at values of Mo/fn
other than 1, the comparisons shown in figure L4 have been made, Here,
the predictions of the present method and those of the generalized method
sre compared with experimental results for fineness ratio 3 and 5 tangent
oglves at Mach numbers of 3.00, h.2hk, and 5.05. 10 The values of Mo /T
range from 0.60 to 1.68. The experimental results were taken from refergnn
ence 3. For all cases shown, the predictions of the present method are
within the accuracy of the experimental data. It is also apparent that

SIn all epplications of the present method to. curved bodles, the
tangent bodies employed were formed by elements tangent to the original
bodies at stations X/Zn =0, 0.1, 0.2, . . ., 1.0. The tangent-body
approximation is required only if the body profile is curved since for
cone-cylinders, and for the cylindrical section of any nose-cylinder com-
bination, the present method ylelds results in closed form.

10For some of the cases shown in figure 4, the semlempirical methods
of reference 20 may be used.
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the predictions of the present method tend to approach those of the gen-

eralized method as My/fn becomes apprecisbly greater than 1. At .
Mo/fn = 1.68 (fig. 4(f)), for example, the predictions of the two_mgthgds -
differ only slightly. -

In.figure 4, comparison i1s also made with the second-order potential
theory (ref. 5) for conditions where this theory is applicable (1.e.,
O/f = 0.60 and 0.85). It is somewhat surprising that the present method
is as accurate as the second-order potential theory even at the relatively
low valae of Mo/fn of 0.60. T

The results presented in figures 3 and 4 indicate that the present
method fulfills its Intended purpose by providing an estimate of the
pressures_on.noninclined bodies of revolution for velues of Mo/fn near 1.
At values of. Mo/fn as low as 0.60 the present method provides results ’
comparable in sccuracy with those obtained with the second-order potential
theory. - At values of Mo/fn epproaching 2, the predictions of the present -
- method and those of the. generslized shock-expansion method differ only
slightly. It remains now to investigste the applications of the method
to inclined bodies. e B

Lifting Bod.:’x_.eS' P SRURELEE - .. e e ===

The experimental results obtained.in the present tests are given in
tables I and TI. Predictions of various theories are also tabulated.
These include the predictions of—the present method (with various spproxi-
mations), the generalized shock-expansion method (reéf. 3), first-order
potential theory (refs. 6 and 21), Van Dyke's hybrid potential theory
(ref. 6), and Newtonian impact theory (see, e.g., ref. 22).11 wWith the
exception of the two potentiasl theories; all theories have been applied
throughout the entiré range of—test variables. The potentisl theories
cannot he employed, of course, i1f the free-stream Mach angle s less than
the body semlvertex angle. Lo . . =

Normal-force derivative.~ The experimentally determined normal-force
derivatlives and the predictions of the various theories™® for the bodies
tested are shown in figures 5(a) through 5(f). In general, the present
method predicts the normal-force derivatives at zero angle of attack

1laplutions with the second-order ‘potential theory employed in the

epplicasion of the hybrid theory were obtalned with the aid of refer-
ence 23, (Additional results cbtained with the first-order and hybrid
potential theorles -and with Newtonisn impact theory may be found in ref-
erence 24.) - N

" 120urves for the first-order potentisl theory are not shown in filg- .-
ure 5 since, in all except a few cases, the predictions of this theory
did not differ significantly from those of the hybrid potential theory
(see tables I and II).
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essentially within the accuracy of the data (within sbout +0.2) through-
out the entire range of test varisbles. In addition, the present method
appears to provide the most consistently accurate results of all the =~
theories presented in figure 5. The accuracy of the method at low values
of Mo/fn can be explained partially by examination of the predictions
of the method for the limiting case of very slender bodies. In this
limit, it can be shown from equations (4) and (9) that the term, 7,
approaches infinity. From equation (19), then, the loading, A, may be
written

- - o 4x
A=2tnd=2% (22)
since %%? oy = 2 (see, fig. 2). With the substitution of this equation
cX
in equation (14), there is obtained ' -
acy zﬂf‘@g - ax __-_2_/”' A g (23)
da E dx Ap dx i _
[e] o] )

This result is, of course, the well-known prediction of slender-body N
theory, which is known to be accurate for slender bodies at low supersonic
speeds. Thus, the accuracy of the present method at low values of Mb/fn
can be attributed, in part, to the fact that it reduces to slender-body
theory in the limit. : Co o

From the results given in figure 5, several observations can be made
concerning the accuracy of other theories. For example, it might be.
expected that the potential theories would be more accurate than the other
theories when the parameter N/Mba - 1 tan 8y 1is eppreciably less than 1.
For the fp = 7 cone at Mo = 3 (fig. 5(a)), however, this parameter is
only 0.20, and yet, for the longer afterbodies, the hybrid potentiasl theory
is apprecisbly more in error than the present method. As found in ref-
erences 2 through L4, the generalized shock-expansion method gives accurate
results when Mo/f is greater than sbout 1. Caution should be expressed
here, however, for the significant parameter is truly Mo/f and not
Mo/fn. The results shown in figure 5 indicate that although My/fn may
be apprecilably greater than 1, for cases where the afterbody is suffi-
ciently long to reduce Mo/f below 1, the predictions of. the generalized
method may depart appreciably from the experimental results. In general,
impact theory glves acceptable results only for nose sections- without
afterbodies. -

Center of pressure.~ The experimentally determined centers of pres-
sure and predictions of the various theories for the bodies tested are
presented in figure 6. The present method predicts the location of the
centers of pressure essentlally within the accuracy of the data (within
about *0.2 body diameters) throughout the entire range of test varisbles.
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In addition, the present method again provides the most consistently
accurste results of all the theories presented. In genersal, all observa-
tions msde previously regarding the religbility with which the various
theories ywredict the .normal-force derivatives can also he made in the L
case of tke centers of pressure. - T TS

Ranges of applicability.- Several parsmeters are useful for defining
the ranges. of epplicability of the various theories. The ranges of these
parameters covered by the present tests are.shown in the faollowing table:

Parameter Rarige _ _
Mo 3.00 to 6.28 -
f 3 to 17
fn 3 to 7
fg 0 to 10
Mo/t 0.18 to 2.09
Mo/Ta 0.43 to 2.09
JMoZ - 1 ten By | 0.20 to 2.12 -

The sscond-order shock-expansion method was found to be applicable . L
throughout the ranges of varisbles shown in the table. Both dCy/do and ~ '
i/d were predicted within +0.2. The present tests did not reveal the
limits of applicability of the method. It—was indicated, however, that
the method may apply to relatively low values of My/fn (ornJMo2 1 tan 8y),
since, in the limit of very slender bodies, the method reduces to the -
well- known.slender—body theory. The upper limit.of .the method is dictated
by the condition specified in the development - namely, n = 0 (see o
eq. (8)) Calculations have revealed that this condition will be violated

if JMo3-1 san By 1is appreciably greater than 2.5. _ ' T T

The present tests also reaffirmed the conclusion given in references 1
through 4, that the generalized shock-expansion method is appliceble when
Mo/f is greater than about 1. At values of Mb/f appreclebly greater
than 1, no ¥ignificant differences between the predictions of the general-
ized and second-order methods were found. The ranges of applicabillty of
these two riethods overlap snd thus include most flows about_pointed bodies_
of revolution throughout the intermedlate- and high—supersonlc speed S
ranges. e N - =TT T T

Application of the potential theories is, of course, limited by the
condition that:iMoz-l tan &y must be less than 1. BEven at the lowest
values Of'Jszrl tan 8, covered by the present tests, however, neither
the first-crder nor the hybrld potential theory was found to provide con-
sistently eccurate predictions of dCy/de or X/d. The calculations per-
formed alsc revealed no significant differences in the predictions of the
two theories at values of ~Mg2-1 tah 8y less than sbout 0.7. _ T
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Approximations of the Present Method

As noted in the development of the present method, a simplified solu-

tion for bodies with curved profiles can be obtained by the use of a two-____'

step tangent body. This approximation has been applied to the ogilve-
cylinders of the present tests. By the use of additional epproximations
to the loading, A, the simplified solutions for dCyn/do and X/d cen be
obtained in closed form as discussed in Appendix C. Examples of the
accuracy of the spproximate solutions are shown in figure 7. While the
approximate methods do not yleld results so consistently accurate as those

obtained with & more complete solution, the approximate methods may still

be useful to obtain rapid estimates of dCy/dx and %¥/d. In this connec-
tion, these quéntities can be estimated for oglive-cylinders in a very
few minutes with the aid of the results given in Appendix C.

CONCLUSIONS

A second-order shock-expansion method spplicable to bodies of revolu-
tion near zero 1lift has been developed. For noninclined bodies, the pres-
sure distributions obtained with the method were compsred with existing
experimental results and with the predictions of other theories. For
inclined bodies, the normal-force derivatives and centers of pressure at
zero angle of attack determined with the method were compsared with the
predictions of other methods and with experimental results. Cone- &and
ogive-cylinders with fineness ratios from 3 to 17 were tested at Mach o
numbers from 3.00 to 6.28, corresponding to a range of values of the
hypersonic similarity parameter based on nose fineness rstio (i e., the
ratio of free-stream Mach number to nose fineness ratio) from 0.43 to
2.09. These comperisons led to the following conclusions: .

1. For noninclined bodies, the present method predicts the pressure
distributions within the accuracy of experimental results. At values of
the hypersonic similarity perameter based on nose fineness ratio as low
as 0.6, the present method is as accurate as the second-order potential
theory. At values of the parameter approaching 2, the predictions of
the present method differ only slightly from those of the generalized
shock-expansion method.

2. PFor inclined bodies, the normal-force derivatives and the loca-
tions of the center of pressure at zero angle of attack predicted with
the present method are in good agreement with the experimental results
throughout the entire range of test variables. Within this range, the
present method yields results more consistently accurdte than those of
other avallsble theories.

Ames Aeronsutical Laborstory
Nationel Advisory Committee for Aeronautics
Moffett Field, Calif., Oct. 12, 1955
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APPENDIX A
POWER SERTES REPRESENTATION OF FLOW ABOUT BODY OF REVOLUTION

The accuracy of the present method has bpeen demonstrated by compar-
isons made over a wide range of flow parameters. It 1s also informetive,
however, Lo examine briefly the mathemstical accuracy of the method. For
this purpose, the model shown in sketch {(c) is useful. From the vertex

Sketch (c)

to point 1, the body is conical. Between points 1 and 2, the surface is
deflected by a small angle, €. At any point downstream of point 1, the
physical devisation of the body from a conical surface may be given in
terms of the angle, €, and the distance, As, measured from point 1. Simi-
larly, flow parasmeters at any point downstream of point 1 may be expressed
in terms of- € and As. Before developing such an expregsion, it should

be noted that for this model (and within the restriction that the flow is
everywhere supersonic), the present method provides an exact solution for
the surface flow in several limits. TFor example, the present method 1s
exact for all values of As vwhen € = 0. For As = O and As »«, the
method 1s exact for all values of €. For arbitrary values of As and e,
of course, the present method 1s not exact. However, the general sccuracy
of the method can be demonstrated by expressing flow parameters in the
form of a Taylor series in the two independent varisbles, € and As. The
dependent varieble used to define the flow may be any one of several param-
eters. Pressure and velocity are among those most commonly used. In the
present aenalysis, however, the Prandtl-Meyer angle, v, is considered the
dependent varlable. It should be recognized that the value of the Prandtl-
Meyer angls st a point will define the Mach number, pressure, velocity,

and other such parameters. We have then the series
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v-v;._+<a (As)+<%>e+
51—[@22 (a0) +2(2 36) (As)(e)+(§52> (e ]+

=& l(Aé)3+3 szt (09 + (5 e (As)(ez)_*GST;)l(es)]*'f'

(A1)
Each of the derivatives is evaluated at As = € = 0. When € = 0, it is
apparent that the flow parameters are constant along the surface and
independent of 8. Therefore, all derivatives with respect to s alone
are zero. When As = O, it is also apparent that (Jv/d8); = -1 and that
all higher derivatives with respect to ® alone are zero. We have then"
the problem of evalua.ting the cross derivatives. The second-order cross
derivative, (0 v/as d8), may be evalusted with the aid of equation (Blk),
from which (3v/ds)> mey be determined; nsmely,

v
@—S:)z @E> . < sin 8; - sin '52> | (52)
It is also spparent that
@5, 3 @),

in the limit as 8z > 8;. Hence, by virtue of equation (A2),

Py -cos By l:m tan 84) - l]
Ss %, aa>l T [ = %) (8%)

As noted in Appendix B, equetlion (B14) is not an exact solution for the
pressure gradient. It cen be demonstrated, however, that equation (A2)
is accurate to the first order in e and hence, equation (A4) is exact.t

ITn the derivation of equation (B1+) a term,

2cosp.2f 7\cosp.< >

was neglected (see eg. (B11l)). In the present snalysis, both Op/dCi
and the intervel of integration, (ss - s,)/b (see sketch (d)), are of
order €; hence, the neglected term is of order e2.
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With the substitution of equation (A4) in equation (Al), and with the
application of the other results previously noted, there is obtained

_= ) _ cos Oy = ; . N
v Vi € &'lm l:(t\) My ._l tan 81) l](Aﬂ)(E) +

o[ (as)3(e), (as)(e)?] ' (a5)

The generalized shock-expansion method of references 1 through 4 gives
the result that v = vy - €. The generalized method gives the Prandtl-
Meyer angle mathemastically sccurste to the first order of the independent
variables € and As and, therefore, immediately downstream of the corner,
glves a lirst-order solution for the surface flow. The present method
adds the coefficient of the term involving (As)(e) in equation (A5) and,
hence, glves the Prandtl-Meyer asngle mathemstically asccurate to the second
order of the Independent varisbles e and As. In general, therefore,
immediately downstream of the corner the present method gives a second-
order solution for the surface flow, and therefore, it has been termed
the second-~order shock-expansion method.

The foregoing analysis considered only expanding flows sbout the
corner. If € 1s positive, then the shock wave emasnating from the corner
must be considered. The result obtained 1s essentlslly the same, however.
For positive € a term of 0(e®) must be added to equation (A5) to account
for the difference between the Rankine-Hugoniot equations and the Prandtl-
Meyer equations. Alternately, the term, -¢, in equation (A5) can be
replaced with the change in Prandtl-Meyer angle between points 1 and 2
as glven by the Rankine-Hugoniot equations. The second-order term in
either cage is identical, however, as equation (Al4) may also be obtained
by differentiating equation (B21). (It msy also be obtained by differenti-
ation of the exact pressure-gradient equation, eq. (B18).)
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APFENDIX B

EVALUATION OF PRESSURE GRADIENT DOWNSTREAM OF CORNER OF BODY
OF REVOLUTION

Convex Corner

Along a streamline in axislly symmetric flow the following relation
holds (see eq. (1))

op d8 _ 1 Op _ =N (/o5  s8in p sin d
ds Ss  ©08s © 3C:  ¢os p A\ T - > (B1)

- A

From this equation, we may also write

3 ] 5 35
o iaadie (82)
and 3 5 .
_8_=_s:an.s:Ln8_cosu. op _ [ols) (B3)
3C, r A @s A _as>_

Consider now the flow in the region of a convex corner on & body of
revolution as shown in sketch (d). Between points 4 and 5, we may write,

Mach lines

Streamiline

Sketch (d)
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from equition (Bl)

Ps s i
dp _ - _ 1 dp
{( Fy (8s ®4) ‘Zn A cos p <$cl) ds (B4)
4

If points 4 and 5 are near to the surface, eguation (Bh) may be apprax11

mated by

5
~dp  Ps - P2 DPse - P1_ _ =/” D
/\ AT Az A1 (85 - B4) A cos p <B ;) ds

~

(B5)

Since the’ flow between points 1l and 2 is strictly of the Prandtl-Meyer
type, ' _

Pz . o T
a
f —%:Vl—\/2=52-51. (36)
1

We may also write from equations (B2) and (B3)

| B (30 ) - %&% [@_le ) 7\2@—32]10 (=7)

Ps =Py 1 /b, . OB Hi r(ﬁ{ WL :]
7\1 ) B ?\]_ BCJ_ & 7\1 ’_ 38)1 7\1 aS 1. = (B8)
1
3% sin ppsin 5 cos Uz [(ép (?6 ]
g = O — )b = 85 =~ - —_ - — 1 b
5 = %2 ac:)2 2 - =% Lo v as>2 A as>2
(B9)

.1 sin pisin &, cos ul 38
. 22 - - - A
Ba = P2 ac1>la o1 F° [@J l(&s)]

(B10)
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When equations (B6) through (B1O) are substituted into equations (B5),
- there 1s obtained

2 cos po [/dp) _ 2 cos Wi (3 fele)
Beme [ @) - S (@), G

sin ussin dp sin pisin 81 ' Jf5 1 op .
b - 8 = ds
A cos u \OCy
(B11)

r r -

If it is sssumed that a first approximation td the flow is given by the
generalized shock-expansion method, then the right-hand member of equa-
tion (Bll) maey be neglected. Equation (Bll) may thus be written

: P 3 Ao <é> .
- - N — = — =) sin s8in %7 - sin sin & +

o b t:( HE®, - &), =2

In the 1limit as the streamline between points 4 and 5 approaches the
surface, the ratio, a/b, mey be evaluated in terms of the one-dimensional
area ratio

a sin pp\ £2

& _ (2 =2y = 1

b <Sj—n K1/ Qo ) (B 3)
. With the substitution of equation (B13) into (Bl2), there is obtained

after combination of terms _ﬁ____._;_
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P\ _ 5. (3% _Bz /4y - sin &) L B2 91 [/Op\ _ . /38
<§§;L  32 = =7 (62 sin 8y s;n 5%) 5 0 [<SS>1 Ax S 1]

(B14)
where =T i o7 ' O . - TR
2
B =-2(M; }_41) (B15)
and, of coutse =
. ;;§Z§; B P, —
(y+1)
-1 2(y-1)
N iZ—E———)-M.z _
S (7 N 1_> (B1L7)
o <

Equation (Bll) represents only an approximate evalugtion of the
pressure gradient. More exact evaluations may be found in references 10
end 25. These more exactresults, of course, require numericsl or graph-

lcal integration. _ _ .
Concave Corner

In most cases, the tangent bodies used in the application of the
present method will have convex corners. There i1s a possibility that
concave corners may be encountered. In the event that the original body
does not have sharp concave corners, equation (BLlL) will still suffice
since the flow along the surface is still isentropic. However, if the
original hody does have sharp concave corners, then the pressure gradient
for this case will also be reguired. Thie result can be obtained in the
same way es equation (Blk); however, the shock wave emanating from the
corner must be considered after the manner described in reference 9. The
expression defining the pressure gradlent in this case is



B8 @I et} B[R R [ ] e @) eote- s}
@) le-uyin *"d] as){xu(z’p)[m“ S G )"““’ )}

D T R R
PR Gt B

where
( 1) pM"sin(o ~ By)eos(o - By)
@g>0=[ i sin(c - cos(c cos®(a - 83) ] (®19)
sin(o - os(g - ﬁu) ' +l MuZsin®(o - Bu)
and ! |
.F=(-‘7—g_l.)(l+ Mua)in - Bu)
(3e0)

[(7 + 1)ten(8g ~ By)eos(o - By) - sin(o -~ dy)My"sin®(a - By) + sin(o - By)
1+ [1 - 2 sin®(c - 8y) + 2 tan(8d - Bu)sin(o - By)eos(o - %)]Muzsi.na(o - 8y)

126E NI VOVN
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In these &guations, o 1s the shock-wave angle with respect to-the body
exis, and.(0H/dn), is .the variamtion of the total pressure normal to the
surface Jist upstream of the shock wave. The subscript, u, refers to
conditions upstream of the shock wave, and the subscript, d, refers to.
conditions downstream. Equation (B18) represents the exact solution in
the usual &hseé. All effects of the Interaction between shock waves and
Mach waves are therefore included. 1In order to be consistent with other
parts of this analysis, these effects should be neglected. In addition,
since equation (B18) is intended for application to _a tangent body, the
body curvatures, (35/ds), and (38/3s)g, will be zero. It may also be

noted that the first step of the tangent body is a cone tangent to the

vertex of the original body. For this approximetion then, there will be
a small layer near the surface of the tangent body for which (d3H/dn) = 0.
With these approximations applied to eguation (B18), a simplified result
can be obualned which will suffice for the present purposes.

3p Ex.ten pg _ 2By sin(o - &y)sin By
AR ] R iy

- sin Bd] +

<§g> [Bd sin(o - 8u) /Pg _"#)'CBb(d - By)tan py

— +_
s /u|Bu sin{c - d3) Pu sin(c - 83)

(321.)

For a body with a concave corner, a special form must alsoc be used
for the loading. Just downstream of the corner and hefore the first—

convex corner

ac _ ) )
A=(1-eMtan & ——E[ + (39 - ) e B22
(1 - e™ten 8 — N e Ay (B22)

and, thereafter,

- N N - 2 Ao P1

= (1 - "Mt —_— n A~ R

A (1 e"M)tan B ) tcx'l'—-.;\-;- e Ay + <§O A p0> GAy (B23)

where = : ’ ) . . SE- = i
7 [My2sin2(0 - &y) - 1]°

¥ Toa/po) | [(7 - imleint(s - ou) + 2lmZeini(a - Bu)

i iy
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The corresponding equations for open-nosed bodies of revolution are
similar. The pressure gradient at the leading edge may be determined
from equstion (B21) with My = Mo, &, = 0, and (Jp/ds)y = O. The loading
on the exterior surface is given by

- dCy A2 -7 P N2 Pz
= - n 5 —= 02 - (2 .=
A= (1L - e l)tan + 5= e A7 <§ ol JAy (B25)

vhere A, 1s the loading at the leading edge, or

4 sin oycos oy

A'v = N N )
(+ 1)1 - sin(oy - By)cos(oy = &y) o 4 cosZ(ay - BV)]
7 sin oycos oy (y +1 Mo2sin®oy
(B26)
end J 1is defined by
5 (MoZsin®oy - 1)2 ' (B2;)

) (pv/po)Mossinscv[(y - 1)My2sin®cy + 2]

For bodles with concave corners, and for open-nosed bodies, the total
pressure is not constant on the surface when the bodlies are inclined.
This variation in surface total pressure leads to the term involving Ay
in equation (B23) and the term involving Ay in equation (B25).
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EXTENSIONS OF THE APPROXIMATE METHCD

This analysis 1s based on the approximate or fwo—step method pre-
viously mentioned. The basic equations of this method are equations (11),
(12), (13), and (20). Before proceeding with this analysis, 1t is con-
venient to write down the expressions for the function B (see eq. (12))

for _several types of bodies These expresslons are presented in the

following table: '

Expressions for B

Body For nose section |For cylindrical afterbody
- X sin &y - r cos &y N
Any bod, = -
¥ ooy r cos d - x sin B 2fnsin '(Zn cos By
=)
Jone-cylinder (Not required)
N1 + bf n2
' 2 X
Tangent-ogive-~ 1 1+ by <2 o #)
cylinder ‘ 2
1+ bf n
- ) r o X
Tangent-~parabolold 2+ <l.- %#) : =l
cylinder . n
2 + 1 Nfn® + 1

In ‘general, the equations for the normael-force and pitching-moment
derivatives may be integrated in two parts - one part for the nose sec-

tion and one for the afterbody. Thus, with the loading defined by

equation (20)

dCx dCN

Ao T @ |pope
4Cu _ dCm _ G1 ~Gafn
der .aE nose Gz

. Gle'szn<} _ o 7Gaf2)

[(1 + Gafn) - (1 . Gafn +-G25aje‘ééf&]_l (&é}

i

NN

e iy
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where S
Psg sin 2u. - 4Cy cos
Gy = 2 a v Ja Sy (c3)
'tlfaCOS 5v P‘V’ sin 21-1'83, do tev
and N
Gz = 2¥gsin &y (ck)

The additional subscript, a, refers to functions evaluated for the after-
body (i.e., 8 = 0). Thus, from equation (13),

V(Psa/Po)Msaz Qv
2(1 - DPag/po)(Meg? - 1) Tse

- (c5)

The terms G; and Gz are functions of Mg and 8, alone. These
functions have been evaluated and the results are shown in figure 8. For
the special case of cone-cylinders, equations (Cl) and (C2) represent a
closed solution of the general method as well.

By the use of an additional eapproximstion to A, results in closed
form can also be obtained for ogival nose sections. Such an approximation
is :

r dCy 2
(1 - Gg) -~ - G4:|(ta.n 3)
aCy O ey
A = Ggtan —_— + Gatan & + }
dx /ey tan &+
(cé)
where
Psa g8in 2“"\7' _\p.a
G‘a = Pv' Si'tl 2‘“‘5& € (07) 3
and .-
G = 2(1 - e Vo) (c8)

When equation (C6) is substituted in equations (14) and (21), equatione
are obtained in closed form for d4Cy/de end dCp/da. These equations
involve constants which are complicated functions of the nose angle B8y
(or nose fineness ratio fn). These functions can be expanded in a series

H
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in terms of By; the leading terms of these seriés are canstents independ-
ent of ‘By. In view of the approximate nature of this apnalysis, the use of
the leading terms will suffice. Thus there is obtained

S‘EN_l -1 oa + 81+ uga (O

3 logive | 15 4 + 5 (1 + 4G3) ™ - (c9)
2

1 m _ 2t - 3+ 2G3)< (c10)

fn do ogive 15 tev

To the accuracy of this analysis, these equations also represent the solu-
tions for a tangent paraboloid. These equations have been eveluated for
a range of Mach numbers and nose fineness ratios. The results are pre-
sented in figure 9. Tt is apparent that with the aid of equations (Cl),
(c2), (c9), (C10), and figures 8 and 9, dCy/do and dCp/de for oglve-

cylinders can be evaluated approximately in a few minutes.
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- Appendix C.
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